AD=-AO40 160 YALE UNIV NEW HAVEN CONN SYSTEMS AND INFROHIT!ON SCIENCES F/6 9/4
ADAPTIVE CONTROL OF SINGL:I-INPUT+ SINGLE=-OUTPUT LINEAR SYSTEMS: (U)
APR 77 A FEUER» A S MORSE AF=AFOSR=3176=T77 '
UNCLASSIFIED $/15=7701 AFOSR=TR=77=0660

END

DATE
FILMED

B=77




e s

ol

o

Sy
m
s fee

-
. 2

=







ggeo—

IS
PEVES P SR e R L B et A S N
Sl

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and 18
or public release 1AW AFR 190-12 (7b).

pistribution is unlimited.
A. D. BLOSE
fTechnical Informsation officer

approved f




AtOSR - TR=- 77 = 066 0
ADAPTIVE CONTROL OF SINGLE-INPUT, SINGLE-OUTPUT

LINEAR SYSTEMS*

A. Feuer and A. S. Morse
Approved for public release;

distribution unlimited.
S & IS Report No. 7701 g/IS’ -N701-

April, 1977

Department of Engineering & Applied Science

Yale University

New Haven, Ct., U.S.A. 06520 D D C\

@P@!Eﬂﬂnf?
! [ Jun 6 ey

LPULSLEJLSU 1]
A A

This research was supported by the United States Air Force Office of
Scientific Research under Grant No. 77-3176.




i L BT et R ':-"" I Moo T, L g ""_'".-“".;'-'.‘:g"';.:.'3"'."%_ SR e g i Sk Tt
ABSTRACT
A procedure is presented for designing an adaptive control

for a single-input, single-output process admitting an essentially
unknown but fixed linear model, so that the resulting closed-loop
system is stable with zero steady-state tracking error between the
output of the process and the output of a prespecified linear
reference model. The adaptive controller is a differentiator-free
dynamical system forced only by the process input and output, as

well as a reference input.
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" INTRODUCTION
In this.paper we consider the problem of designing an adaptive control
for a single-input, single-output process admitting an essentially unknown but
fixed linear model, so that the tracking error between the output of the re-
sulting controlled system and the output of a prespecified linear reference
model is regulated to zero asymptotically. We assume that only the process
input and output can be measured and we require the adaptive controller to be
a differentiator-free dynamical system realizable with conventional analog
components.
Although the development of a methodology for designing such a system is
clearly one of the fundamental problems of adaptive control, surprisingly
little seems to be known about the problem's possible solution. In [1] Parks
put forth the idea of Liapunov redesign which can be shown to solve the prob-
lem for process models of dimension one and two. In [2] Monopoli
casts the problem in a useful form (a simplification of which is used in this
paper) by making the important observation that it is not really necessary to
separately identify process ﬁodel parameters and control feedback gains. How-
ever the arguments in [2] concerning stability contain errors and do not justify
the paper's main claims; indeed there is reason to believe that the adaptive
control proposed in [2] can result in an unstable system [3]. Similar errors
concerning stability can be found in [4] where a form of 'implicit differentiation'
is proposed to get around the problems which arise when one attempts to extend
previous results to systems of dimension greater than two.
The purpose of this paper is to present what we believe to be the first solu-
tion to the aforementioned adaptive control problem which results in a stable
closed-loop system in which all signals and gains are guaranteed to remain

bounded. The proposed controller requires no 1mp11£1t or explicit differentia-
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The only assumptions made about the process are that it admits a transfer
function model with left-half plane zeros and that An upper bound for the
transfer function's diwmension, the relative degree of the transfer functionm,

and the sign of the transfer function 'gain' are known.

Notation

In the sequel, prime denotes transpose. If n is a positive integer, then
a = {1,2,...,n} gnd n, = {0,1,2,...,n}. Depending on context the letter s may
be viewed as an indeterminate, a differential operator or Laplace transform
variable. The zero state output of a linear system with input f(t) and trans-
fer function a(s)/g(s) is often written as (a/B)f(t). If M(t) and N(t) are
two mxn matrices of time functions, we write M = N (e¢) if each element of the
matrix M - N is bounded in magnitude by a time'function which is decaying to

zero exponentially fast.
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Our basic assumption is that the relacionship between the process input
u and output y can be modelled by a linear system with strictly proper trans-
fer function gpap(s)/Bp(s) where gp is a constant gain, up(s) is a stable,
monic polynomial of degree mp and Bp(s) is a monic polynomial of degree np.

The only data assumed known are the sign of gp, an integer n satisfying n 2 up

and the relative degree 'd = np - mp of the process transfer function.

To motivate our selection of a reference model which the process is ul-
timately supposed to follow, let us recall that if I is any linear dynamical
(i.e., differentiator-free) compensator with reference input r, measured input
y and output u, and if a(s)/B(s) is the resulting closed-loop transfer function
from r to y, then the relative degree of a(s)/B(s) cannot be less than np - mp'
Indeed, this fundamental constraint on a(s)/B(s) can be relaxed only by incor-
porating differentiators in I. Clearly any adaptive system employing a refer-
ence model not respecting this constraint {e.g. [4]} must involve some form of
implicit (if not explicit) differentiation. Since we have stipulated that our
adaptive controller be differentiator-free, we must require the relative degree

of our reference model transfer function a(s)/B(s) to satisfy
deg(B) - deg(a) = d (1)
We further assume that g(s) is a stable polynomial.

Lemma 1: There exist stable, monic polynomials Yo(s) and yl(s) of degrees one

and d - 1 respectively and a stable, proper transfer function h(s) such that

. a(s) . 1
B(s) y(s) 8 2
y(s) = 70(8)11(8) (3)
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To proceed, select m(s) to be any stable monic polynomial of degree n

and let {ui(s),i € n} be any basis for the vector space of polynomials of

i-1

degree less than n {e.g., ui(s) = s “,1 e n}. Define the 2n + 1 sensitivity

function vector 6 = [6 n] by the equations

0,61,...,92

8p(t) = h(s)z(t)

1 i y(t) ien ? (4)
uy (s)

()u(t) ien

and write

e(t) = y(t) - yu(t) (5)

for the tracking error between the process output and the output of the refer-

ence model with input r(t), i.e.

V() = S £(0) 6)

Proposition 1: There exists a constant parameter vector q such that

g
e= ;2 (u + 6q) (e) (7

Proof: Write § and p for the unique quotient and remainder of wy divided by

; thus
BP

= § + 8).
Y Bp [ (8)

where deg(p) < deg(sp) < n; hence there exist numbers a such that
n
p/lg_= L qm 9)
P =1 i |

Since deg(p) < deg(Bp),(a) implies that deg(my) = deg(sep) and also that

<t @ %

é§ is monic, Renceubcis monic and deg(cp&) = deg(cp) - deg(BP) + deg(my) = deg(n).
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» (10)

then deg(n) < deg(m) = n. Hence there exist numbers qy such that

n

Lq H
=1 nti 1
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Using (8) an& then (10) we may write

. 11)

(ry = p)y(t) éspy(t)

g a u(t
sp - (t)

sp(n + n)u(t)
Thus
g (0/g.)
y(e) = =B (—TL y(e) + 7 ule) + u(t)> ©)
Hence from (2),(5) and (6) we see that

g (p/g.)
e(t) = -2 (u(:) + ———y(t) + 7 u(t) - (n/g )r(c)) (e)

Set 9 = - llgp, and q = col.[qo,...,qzn].

It now follows from (9),(11) and (4), that (7) is true. [

2. CONTROL EQUATIONS
The following signals must be generated to fealize the proposed adaptive
controller. With Yl as defined by Lemma 1 and ei as in (4), set

T = col.lco.cl,....;Zn] where

Ci(t) 71(8) 0,(t), 4ie 2n, (12)
If d > 1set k=d - 1 and define
1—1
¢,(t) = -sign (zp) (.) (8(t)) | c(r), iek (13)

[ Y S




i i

i
i

L ————

P Ve Bor 't e Ky le€ Ay b6 a fixed  paeitive, iumber. oDefine:signals wy ()i EK ot i

and wi,j(t)’.i ek, je 10 be the formulas

1
0, = ¢1 (a)
i-1
", » ¢1 +j§1 wi-l,jwj L6429, saes kY (b)
by o= O fek © e e
i 2 :
bt B sen @
. 2
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T ed, $€ 125,00k} (ey

We wish to show that each of the signals defined by (14) can be generated
from y, u or r without using differentiators. To do this, we digress briefly to
introduce the following terminology.

Let f(t) be a scalar-valued, piecewise-continuous function, defined for
t 3 0. A scalar-valued time function v(t) defingd for t > 0 is said to be in
class gi(f) just in case there exists a stable transfer function h(s) of rela-
tive degree j 3 i such that Q(t) = h(s)f(t) (e). For example, v ¢ g}(f) if
and only if v is the output (mod e¢) of a strictly proper stable linear system
with input f£.

With 1 3 1, let gf denote the subring of the ring of time functions on [0,x)
(wvith pointwise addition and multiplication), generated by the constant functions
together with the elements of g}(u)ug}(y)ug?-l(r). In other words, v ¢ g}

Just in case v can be e#pressed as a finite sum of finite products of time func-
tions w (mod ¢) where w is either a constant or an element of g}(u)qg}(y)ug}-l(r).
Clearly any aignai in g} can be generated (mod ¢) using only conventional analog

components.

Observe that (4) implies that




This and (12) show that

Thus from (13) there follows

M

Proposition 2:

= g.(d+1—i)

= E.(d+1-i) Lek §e

(16)

(17)

(18a)

(18b)

The proposition implies that even though the equations defining the wi j
’

and wy involve derivatives of the *1 3 these signals can nevertheless be
’ ¢

free, linear systems forced by r,u and y.

&t

For d = 3 (i.e., k = 2) it is straightforward to verify that w

2 -
AL by g = A0, by O e ey =, Y

Lemma 2: If 4 > 1 and if £(t) ¢ C, then £(t) e ¢I™D)

The simple nroof of this lemma is omitted.

Proof of Proposition 2: For 1 = 1, o

realized as sums and products of constants and outputs of stable, differentiator-

1 i g

= 0 and wl,l = mi + Al; hence

s L

from (17), w € QF. Since Al and 0 are constants, it follows that wl 1 and wl 0
’ ’

are elements of g? as well. Thus (18) holds for i = 1.

- .&LKW
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. Now- suppose the proposition is. true for all'i:§ 3, -where:j < k 4s fixed.

From (14b), (17), and the inductive hypothesis there follows w € gfd'j).

j+1
This together with (1l4c) - (l4e), Lemma 2 and the inductive hypothesis imply

that *j+l ¢ € Qﬁd—j) for t ¢ {0,1,...,j+1}. Hence by induction, the proposition

is true. [J

To characterize the proposed adaptive controller, let AO and ai,i e k,

denote the coefficients of the polynomials defined by (3); i.e. =s + A

Yo o’
Y1 = sk + a, sk_l e eie a2 s + a. Let Q denote the lower triangular matrix.

F-a s o
-wll 1 o . L]
aa ity T v - v (19)
L et Ml eaasa bl .
and let 61 be the ith element of the row vector
TR S R (R | B (20)
h L A *k kl1’%k2’ *Ykk

Observe that since det Q = 1, the time functions 6i are simply sums of products

of the vij'
The remaining equations defining the proposed adaptive controller are as

follows:
Xg = A% - gx, (21)
AR ¢, (xg + ), 1 e {1,2,000,k=1} (22)
& = (sign gp)(x0 + e)g (24)
g = x, (xy + e (25)

8
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* u=-03 - 151(51 madx, + (4 -w)(xyte) (26)

The adaptive controller is thus completely described by equations (4), (12)-(14)
and (19)-(26).

Remark: In the very special case when d = 1 (i.e., k = 0) the adaptive controller is

described by (4),(12) and u = - 6§, where é is now redefined to be é =-(gign gp)e;.
3. SYSTEM STABILITY
Our main result is as follows.

Theorem 1: Let r be any bounded, piecewise-continuous reference signal. Then

Ys Uy X, ie EO’ g, 4 are bounded time functions and

Lim e(t) = 0
>

Remark: From (15)-(18) (20), and the boundedness of r,u and y it clearly follows that
all the remaining time functions associated with the adaptive system (i.e.,

9.(,01.wi,wi.j,6) are bounded gs well.

Remark: It is worth noting here that the preceding theorem says nothing about
the manner in which e(t) tends to zero as t -+ ©, A monotone e(t) would be ideal
but it is not difficult to see that this will not be the case except possibly if
the reference signal is sﬁfficiently rich to force the parameter errors {(t) - q
and g(t) - gp to zero as t + @, This issue with its obvious practical implica-
tipnc will be examined in a future paper.

The proof of Theorem 1 depends on the following lemmas.
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Proof: Let (c,A,b) canonically realize 1/Yl(s) with (A,b) is standard control

canonical form. Then from (3),(7) and (26)
g
e =Ly €) (28)
Yo
where
W= Aw + b(6(q-q) + uo) (29)
and
‘ k
uo = ;51(61-81)11 + (Qk"uk) (to + e) (30)
H
i If we now define
H = AH + bO (31)
Q-Az+buo+ué (32)
and
W=z + H(q-9)
then

e
n

AV + b(6(q-q) + ug)

It follows from (29) and the stability of A that cw = ci (¢) and thus that
cw = cz + cH(q-9) (33)

Since c,A,b realizes 1/Y1. (31) and (12) imply that z” = cH. From this, (28) and
(33) there follows

g
e = =2 (cz + £”(q-9)) (e) (34)
Yo _

From (13) and (31) it is straightforward to verify that

10
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= -sign (gp)Hc

Using this and (24) we can therefore write
i 01
HG = | " |(x, + e)
¢k
L o

By substituting this and (30) into (32) it is easy to see that the ith component
of z(t) must satisfy

z, = 2. + ¢1(xo +e) 1ie€e{1,2,...,k-1}

k k
= -1% a,(z, - xi) -z

z §.x, + (¢, - w,)(x, + e)
IR g Faflyy i "%

From these equations and (22) and (23) it clearly follows that (i - i) = A(z - x)

where x = col. [xl,xz,...,xk]. Since A is stable we have thus shown that z = x (&)

and thus that cz = x; (e). Substitution of x, for cz in (34) thus yields the

1

desired result. []

Lemma 4: Let zi(t), i e k, be time functions defined by the equations

z, = xl (35)
i-1
2, = x, + jfl V1,4% L€ {2,3,...,k} (36)

. 2 '
5 - -(11 * wi)z1 tzo 0t wi(xo +e), 1€ (1,2,...,k=1},(37)

. . 2
2, -_-(Ak + mk)zk (38)

11
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2
it T Progf: . (If. ke 1y o(14): implies : that ‘i;' W, = 0. qnd that *kk" w # X

1 1'
(20), Gk ] satisfies (38). Thus

rom. ..
Kk Hence by (23) and (35) it follows that z
the lemma is true if k = 1.

|3

Let k > 1 be fixed. From (22) and (35) there follows 2. = X, + ¢_(x, + e);
2 10

1
. 2
thus from (36) z, = -wl lz + z, + ¢1(x0 + e). Since *1.1 Wy + Al by defini-
tion, z, satisfies (37). It follows that the lemma is true for i = 1.

N e

Now suppose the lemma is true for j <(i - 1), where (i - 1) € {1,2,..,k-1}
is fixed.

From (36)
: 1-1 |

satisfies (37) for j < i - 1, we can write

Since by hypothesis zj

&, - X, +:i-:1(u;1 1,573+ Vo1, g Fuyxp t @) - O wi)zj))
1-1 1-1
=% +j21*1 N b bk B jfl(*i B Naaa g g v ))zj
* V41,147

From this and (14) it follows that

. i

2, =x, ~ ¢1(x +e) +uw (x + e) - (m + A )z1 +jflw 3% (39)
If 1 < k, (22) and (39) yield

: i

z, = X g to(x,+e) - (w + Az, +j£1¢i %5

Elimination of Xy, using (36) shows that z

If 1 = k, (23) and (39) yield

N satisfies (37).

. k 2 k
zZ, = -Léx - (o +2)z +1 W z

12
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. But (35) and (36). imply-x = Qz,.with Q .as defiged.in.(19), x; and -z, being.. ... ., ..ii..

the ith components of x and z respectively. From this and (20) it is clear that

k k
- éx, +L ¥ z, =0
ge1 33 gap ke3S b4

and thus that z, satisfies (38). By induction, the lemma is true. [

The assumed stability of the numerator polynomial aé of the process transfer

function is exploited in the following lemma.

Lemma 5: Let i € k, be fixed. If y and its first i derivatives are bounded

_ﬁ
functions, then each function in §§-1 is bounded as well.

Proof: Let w and o be stable, monic polynomials of degrees d ~ i and i respec-

tively. Then upwo is a stable monic, polynomial of degree np. If we define

T Bp - apow, then deg(p) < deg(apow) and

u + a on)oy = of
( Selond 7

1

= 0g au
gp P
Since upow is a stable polynomial, it follows that

1

El a om

u= El(-g—‘ oy + ay) (e)
P

where v/apow is a strictly proper, stable transfer function. Since ¢ is a poly-
nomial of degree i, it follows from the lemma's hypothesis that oY.(u/upou)oy
and thus (1/m)u are bounded.

Now let w ¢ g?'i(u) be fixed. Hence there exists a stable transfer function
a/B with relative degree no smaller than d - i such that w = (a/f)u. The first

two properties of alB imply that (m;)/a is a stable transfer function with non-

negative relative degree. Thus W = (ma/B)(1/7)u is bounded and since w is stable,
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h g

e W () g0 w 48 bounded a8 ‘we¥l.. Therefore’ each funiction in ¢ (a) 18 ‘bounded.

Since boundedness of r and y clearly imply boundedness of all functions in

g.d-i(y)ucd-i-l

To proceed it proves useful to introduce the variables

e = ¢ + xo
q=4d-q (40)
E*E " 8p
Using (21), (27) and (35) we obtain
e A e ‘q - gz 41)
o~ Ay Squ 8z, (e) (
while from (24), (25) and (35)
a -
q= sisn(sp)ec (42)
E = zla (43)

Observe from (5), and (40) that y will be bounded provided each element of
the set

<y>

lyysx, ) (44)

is. By differentiating each element in <y> and using (21),(35), (40) and (41)
it is easy to see that § will be bounded provided each element in the set

<y> = {yu’zl

is. Continuing in this way it is quite straightforward to verify that for
1 <1 ¢ k, the ith derivative of y, written y(i). will be bounded provided each

element of the set

(1) (1) (i-1) m(i-Z) m(1-3)

<y bt {YH sziic o | ) "'°sw1_1}U<y(i-1)> (46)

14

(r), it follows from the definition of gﬁ‘i that the lemma is true.

.C.Q.E}U<Y> (45) -
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" 48, For example, by differéntiating each element bf the“set <ys, and wsing < .4 i

(37), (42) aﬁd (43), one readily finds that the set <§> defined above has the
required property.

We now give a proof of Theorem 1 for the case d > 1, i.e., k > 0. The
proof for the special case d = 1 involves similar (but very much simpler) argu-

ments and will not be given.

Proof of Theorem 1: It will first be shown that e, z,5 i ek, q and g are bounded

& - - -
time functions. For this define e(t) = e + xoe + gpc'q + z,g 8o that

:--%;-%Va-ﬁ§+ﬂﬂ 47
and let
PR S S i =2 .2 2
a(t) = i(boe +1£1bizi + |gp|b°(q q) + bog + (bOIZ)\o)[t e“(t)dr) (48)
(k-1)
where b1 3 7 b1 = bi_lf(kiki_l), ie{2,3,...,k} and bo = (1 +(1ilb1)/4lo).

Observe that the integral in (48) is finite since by (41), ¢(t) must approach
zero exponentially fast. From (37), (38), (42), (43) and (47), it follows by

direct verification that

. - 2 F 2 2 2
o= -lo(e - (bOIZXo)c) - (b111/2)z1 - bk(lk/Z + wk)zk
- F bi((mizi - e/2)" + (11/2)(21 -

/x1)2> (49)
i=]1

2

Since a(t) 3 0 and a(t) ¢ 0, it follows that a(t) € a(0) < ». Thus a(t) is

bounded. From (48) it is now clear that e, z,, 1 ¢ k, a and E are bounded; it

i’
follows from (40) that q and § are bounded as well.
Boundedness of g and z) together with (35) and (21), imply that Xy is bounded.
Since y“ is clearly bounded, it follows from (44) that y is also. Thus by Lemma 5,

all functions in g? are bounded. This and (16) imply that ¢ is bounded. Since




' §y s cléarly bounded, it Follows:£fom €4S) tRat y. is Al8c. " THYb ‘and Lemma 5 i "7 0

show that g}'is bounded for the case d = 2.

To reach the same conclusion for d > 2 (i.e., k > 1), suppose that for fixed

(i-1)

i e {2,...,k}, all elements of the set <y > are bounded; this, of course,

(i-1)

implies that y,...,y are bounded as well. Since y&j) is bounded for all

(1)

J <k, Yu is bounded as is z, as was shown previously. Now for any integer

i
j e {1,2,...,i-1}, we have by Proposition 2 that w, € Q‘d+1-j). Hence by Lemma 2

h |
w}i-(j+1)) € 9‘d+1~(i-1)) which, by definition, is a subset of‘g(d—(i-l)); since

by Lemma 5 all functions in ¢(9""1) .re bounded, it follows that wgi‘(j+1))1s

bounded for j € {1,2,...,1i-1}. Thus from (46), all elements of the set <y(i)>

(k)

are bounded. By induction, it now follows that all elements of <y ’> are bounded

implying that y,...,y(k)

are bounded. Since k =d - 1, it now follows from Lemma
S, that.g} contains only bounded functions.
The boundedness of the functions in g} together with (15)-(18) imply that

0,z, all wy and all ¢ are bounded as well. This and Lemma 4 shows that x

i,] "
1 € k are bounded. It now follows from (26) that the first assertion of Theorem 1
is true. ;

To prove that e(t) + 0, we note from (49), and the boundedness of all func-
tions, that a(t) is bounded. This together with the boundedness of o and the
fact that the integral I“&(t)dt converges, allows us to claim that Lim &(t) = 0.
From this and (49) it foglows that as t + =, all z, and e approach ;::o. Since

X =2 and g is bounded, éxl is bounded and approaches zero as t * ®, From this,

> 0 it follows that x, + 0 as t + «», Therefore by (40),

(21), and the fact that AO 0

Lim e(t) = 0, as claimed. [
t-roo
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* i

In this.paper we have shown that it is possible to construct an adaptive
control for a linear process model which results in a stable closed-loop sys-
tem with zero steady-state output tracking error. While the proposed controller
is admittedly complex, to our knowledge it is the only differentiator-free
dynamical adaptive control proposed thus far which has been shown to produce
stable closed-loop opefation. The existence of such a control actually runs

contrary to our own earlier expectations [5], and possibly to those of others

[6]. Indeed, it would be interesting to draw connections between the modelling
assumptions in this paper and the results of [6].

Since Theorem 1 is true, independent of the stability of the open-loop
process model, the results presented here are potentially applicable to the prob-
lem of identifying process models not assumed to be open-loop stable. Be the
application identification or control, it is of course important to insure that

the reference signal can be selected so as to yield zero steady-state system

parameter errors. This matter will be considered in a future paper.

'




$iieape g A e

(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

P. C. Parks, "Liapunov Redesign of Model Reference Adaptive Control
Systems," IEEE Trans. Auto. Control, AC-11 (3), July, 1966, pp. 362-367.

R. V. Monopoli, "Model Reference Adaptive Control with an Augmented
Error Signal," IEEE Trans. Auto. Control, AC-19 (5), October, 1974,
PP. 474-484,

A. Feuer, Yale University Doctoral Dissertation, in preparation.

H. Elliott and W. A. Wolovich, "Model Reference Adaptive Control and
Identification," Brown University Technical Report, March, 1977.

A. S. Morse, "Representation and Parameter Identification of Multi-
Output Linear Systems,” Proc. IEEE Conf. on Decision and Control, 1974,
PP. 301-306.

R. W. Brockett, "Some Geometric Questions in the Theory of Linear Systems,"
IEEE Trans. Auto. Control, AC-21 (4), August, 1976, pp. 449-455.

i W Wi




